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Abstract As a practical tool of being applicable to bigger
molecules, a full-blown state-specific multi-reference cou-
pled cluster formalism developed by us (Mahapatra et al.
in J Chem Phys 110:6171, 1999) would be rather demand-
ing computationally, and it is worthwhile to look for phys-
ically motivated approximation schemes which capture a
substantial portion of the correlation of the full-blown the-
ory. In this spirit, we have recently proposed coupled elec-
tron-pair approximation (CEPA)-like various approximants
to the parent spin-adapted state-specific multi-reference cou-
pled cluster (SS-MRCC) theory which depend on the inclu-
sion of EPV terms to various degree. Here, the space of
excitations is confined to the first order interactive virtual
space generated by the cluster operator, but the EPV terms
are included exactly. We call them spin-free state specific
multi-reference CERA (SS-MRCEPA) theories. They work
within the complete active space (CAS) and have been found
to be very effective in bypassing the intruders, similar in per-
formance to that of the parent SS-MRCC theory. The spin-
adaptation of the working equations of both the SS-MRCC
and the CEPA-like approximants is a non-trivial exercise.
In this paper, we delineate briefly the essentials of a spin-
free formulation of the SS-MRCC and SS-MRCEPA theo-
ries. This allows us to include open-shell configuration state
functions (CSF) in the CAS. We consider three variants of
SS-MRCEPA method. Two are explicitly orbital invariant:
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(1) SS-MRCEPA(0), a purely lineralized version of the SS-
MRCC theory, (2) SS-MRCEPA(I), which includes all the
EPV terms explicitly and exactly in an orbital invariant man-
ner and (3) the SS-MRCEPA(D), which emerges when we
keep only the diagonal terms of a set of dressed operators in
the working equations. Unlike the first two, the third version
is not invariant under the orbital transformation within the
set of doubly occupied core, valence and virtual orbitals. The
SS-MRCEPA methods produce very encouraging results as
was evidenced in the applications on the computation of po-
tential energy surfaces for the ground states of LiH and HF
molecules.
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1 Introduction

Prior to the advent of single-reference (SR) coupled cluster
(SRCC) method [1–5], which is very effective and the most
sophisticated for treating dynamical correlations in a size-
extensive manner, Meyer suggested a very useful and simple
non-perturbative size-extensive correlated method known as
coupled electron-pair approximation (CEPA) [6]. The CEPA
method [6–14] can be described as one of the more mod-
est and physically motivated approximations of the corre-
sponding full-blown CC method among the various coupled
pair theories. Although the CEPA method was originally ob-
tained as a result of modification of the size-inextensive con-
figuration interaction (CI) with the single and double (SD)
excitation (CISD) equations to an extensive form, it can be
derived from the CC equations as well by selecting cer-
tain terms from the quadratic part of the working equation.
The CEPA emerges from the CC method if most of the com-
putationally demanding nonlinear terms in the CC method
are neglected, barring the exclusion principle violating (EPV)
terms to various degrees, neglect of which has serious del-
eterious effects. The CEPA method can be viewed either
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as extensivity-corrected CISD or as a special size-extensive
truncation of CCSD. Because of its computational simplic-
ity, CEPA can be effectively exploited to treat rather large
systems. The CEPA methods are more accurate generally as
compared to low order MBPT such as MP2 [15]. There are
several variants of CEPA, such as CEPA(n)(n=0,1 and 2) [6–
8], Kelly’s version [9,10], and the closely allied formulations
like ACPF [11] and AQCC [16,17]. The latter two have the
advantage of using the extrema of some energy functional,
and are thus computationally more convenient for getting
gradients. This feature, however, comes with the price of
approximating the EPV terms quite drastically. In another
line of development, Malrieu and co-workers [12] proposed
a dressed CI approach, which includes the EPV terms ex-
actly in the working equations of CISD via dressing of either
diagonal or the columns of the CI matrix. This leads to a com-
putationally very appealing procedure since the full machin-
ery of the CISD programmes can be effectively utilized. For
extensive survey of SR-based CEPA, we refer to articles by
Kutzelnigg [18], Ahlrichs [19] and also by Szalay [20].

The multi-reference (MR)-based approach is superior
to that of SR-based theories to handle strong quasi-
degeneracy, as in situations involving bond-breaking and
direct or avoided curve crossings. For the states in the bond
breaking region, cross-over region of the PESs, or for excited
states, the interplay of dynamical and non-dynamical correla-
tion effects makes the reference wave functions MR in nature.
Under such circumstances, the performance of the SR-based
CC methods go down unless rather high-body cluster oper-
ators are included [21–29]. The MR-based approaches have
the advantage over such SR counterparts in providing the
flexibility needed to describe important molecular character-
istics, such as bond breaking pathways, excited states, and
transition states, within a few-body truncation scheme.

Considerable effort has been devoted for more than two
decades to formulate MR methods for both ground and ex-
cited electronic states that would have most or all of the
following characteristics: (1) size extensivity and size
consistency, (2) applicability to both closed- and open-shell
systems, (3) ability to accommodate all kinds of multi-
dimensional reference spaces for different states, geometries,
etc., (4) low computer cost and high accuracy, (5) uniform
accuracy in regions of real and/or avoided curve-crossings
and in non-degenerate regimes, and (6) fast convergence.
The MR-based valence-universal (VU) [30–34] and state-
universal (SU) [35,36] coupled cluster (MRCC) methods
truncated at the singly and doubly excited cluster level were
deemed to be capable of providing very good description for
both the dynamical and non-dynamical correlations [30–36].
In particular, it was thought that the SUMR-based methods
would be very useful for generating the potential energy sur-
faces (PES) of a system over a wide range of nuclear geom-
etries. In this method, all the states with constant number of
valence electrons corresponding to the different linear com-
binations of reference functions are treated democratically.
Both the VU-MRCC and the SU-MRCC methods are based
on effective Hamiltonian formalism. They were successfully

applied to the study of direct computation of energy differ-
ences and of excited state energies. Unfortunately, although
the cluster expansion method has several attractive features
of a good many body methods such as size-extensivity, orbital
invariance, etc., its efficacy for PES studies has not yet been
fully established in the context of effective Hamiltonians till
date due to some pitfalls. In the traditional effective Hamilto-
nian-based MR methods, all the roots are obtained via diago-
nalizing the effective Hamiltonian,Heff in the reference space
in a blanket manner. It now seems to be generally recognized
that the simultaneous calculation of all the roots generated by
an Heff is seriously hampered when some virtual functions
come very close in energy to some high-lying model func-
tions. Owing to the coupling of all the eigenvalues via the
Heff , all the roots become poorly described as a consequence.
This is the notorious intruder problem [37,38]. Actually the
coupling between the model space and those of the comple-
mentary virtual space may be too large with respect to the
energy denominators and the series will diverge. Thus, the
discontinuity of the computed PES appears as a function of
nuclear distortions in the presence of intruder states which
prevents the computation of the entire PESs over a wide range
of geometries in a smooth manner. Sometimes one can even
observe that the SR-based theory performs very well, but not
the MR-based one due to the intruder effects.

One way out of the problem of intruder effects is to
develop theories based on MR scheme but to partition the
model space into two sub-spaces – primary and secondary
– where the functions of latter space may be energetically
close in proximity to the functions of virtual space. The idea
is to define a pseudo-wave operator which acts on the en-
tire model space, but generates exact states which are equal
in number to the dimension of the primary model subspace
and are dominated by the model functions spanning this sub-
space. This approach was first proposed by Kirtman [39], and
developed fully by Malrieu et al. [40,41] in the perturbative
context, who termed this the intermediate Hamiltonian (IH)
approach. In this formulation, the rather stringent require-
ment of the effective Hamiltonian approach of having to gen-
erate N eigenvalues from an N -dimensional model space is
abandoned in favour of generating fewer roots M (M ≤ N )
from an N -dimensional model space. In other words, in this
theory, only the subset of the roots of the dressed Hamilto-
nian, which are dominated by the primary functions, are exact
eigen values of the full-blown Hamiltonian. This flexibility
is in fact exploited to bypass intruders which might plague
the higher roots of an effective Hamiltonian. There have also
been important innovations by Hoffmann [42–44], and Khait
and Hoffmann [45]. The latter method generates the optimal
primary subspace in an iterative manner, which improves the
performance of the IH considerably.

Coupled cluster-based IH formalisms [46–48], which are
size-extensive, were also developed. While the method advo-
cated by Mukherjee and co-workers [46,47] is general, that
put forth by Kaldor and co-workers [48] is approximate.
Since the combining coefficients of the model functions are
obtained via diagonalization, they are relaxed in the presence
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of dynamical correlations. Another approach to circumvent
the difficulty is to abandon the partitioning of the MS into
primary and secondary subspace, and define a wave operator
which acts on just one MR reference function, which is a
linear combination of all the functions of the MS. In other
words, the emphasis in this approach is on developing a the-
ory which targets only one state rather than several states at
the same time. This is thus a state-specific approach. In this
strategy, it is not necessary that the exact function be dom-
inated by only certain model functions (which are taken to
form the primary subspace in the IH methods).

We have been concerned in recent years in developing
state-specific multi-reference CC (SS-MRCC) method, work-
ing in both complete [49–52] and incomplete [53] model
spaces, which generate rigorously extensive energies via the
diagonalization of an effective operator in the model space.
Several approximants to the fully developed MRCC theory
were also studied, which include spin-adapted state-specific
multi-reference CEPA (SS-MRCEPA) [54–59] and pertur-
bative versions (SS-MRPT) [60–62]. For a recent survey,
we refer to a forthcoming article [63]. Further studies using
the SS-MRCEPA methods, and development of spin-adapted
versions thereof–thereby enabling us to have open-shell CSFs
is the subject matter of the present paper. The explicit spin-
adaptation of open-shell configurations and formulating a
general viable theory of electron correlation has been a daunt-
ing task. Attempts have been made to utilize the simple expo-
nential Ansatz for the wave-operator in the spin orbital basis
[64–67], containing excitations from the reference determi-
nant taken as the vacuum as one of the most naive approaches
towards a spin-free solution. Although, this leads to a spin-
broken situation, it otherwise retains the compactness and
simplicity of the closed-shell SRCC method in generating
the CC equations. The symmetry-adapted CC expansion gen-
erates a pure spin state, but the corresponding spin-adapted
expressions are unwieldy [68]. The spin-contamination prob-
lem can be partially resolved via certain suitable constraints
on the expectation value of the S2 operator [69]. Jansen and
Schaefer [70] have pointed out the necessity of retaining the
exact spin symmetry and spanning the full spin-space by the
use of explicitly spin-free cluster operators containing spec-
tator excitations on top of the usual operators inducing exci-
tations. This feature of spin adaptation has been explored in
many later developments of spin-free theories [71–74] with
mixed success. A highly sophisticated and explicitly spin-
free formulation, suggested recently by our group [75,76],
employs a cluster Ansatz, different from either a simple expo-
nential, or the more widely used normal-ordered exponen-
tial for open-shells, allowing contractions among the cluster
operators via the orbitals inducing manifest spectator excita-
tions. This is not only a simple spin-free treatment, but is also
terminating in the sense of having terms which are at most
quartic – akin to the purely closed-shell SRCC theory [1–5].
In the present paper, we shall explore both the full-blown
exponential Ansatz as well as its quasi-linearized analogue.

Several state specific MRCC methods to tackle intruders
have been developed in recent times [49–52,77–82]. An MR

version of the dressed CI-based approach was developed by
Malrieu and co-workers [77–79], which is quite analogous to
our SS-MRCEPA methods. A single root Brillouin-Wigner
inspired MRCC approach of Hubac̆ and co-workers [80–82]
has also been suggested, which is, however, not rigorously
extensive. The development of Mukherjee and co-workers
[49–52] and Hubac̆ and co-workers [80–82] are both based
on the full Jeziorski-Monkhorst (JM) Ansatz [35,36]. Very
recently, Pittner [83] showed an analysis for the transition
from the SU theory of Jeziorski and Monkhorst [35,36] to
the state-specific theories of Hubac̆ and co-workers [80–82]
and of Mukherjee and co-workers [49–52]. Malrieu and
co-workers [77–79] formulated their state-specific methods,
using certain low order quasi-linearized truncation schemes
of the JM wave operator, and their emphasis was on incor-
porating all the EPV terms.

The MR-based perturbation theory (MRPT) [40–44,
60–63, 84–95] is another widely used MR theory for many
years. The past few decades have witnessed significant pro-
gress in the formulation of MR perturbation theories, even
though incorporation of all the desirable features are yet to be
completely realized. The state-specific MR (SSMR) pertur-
bative methods [42–44,60–63,86–94] have been developed
to bypass the intruder state problem by focusing on one state
at a time. There have been two distinct courses of develop-
ment of the SSMR-based PT. In one, the coefficients of the
model functions forming the initial reference functions are
fixed by a prior diagonalization in the model space, and they
are not revised or updated as a consequence of mixing with
the virtual functions [42–44,86–94]: frozen coefficients vari-
ety. In contrast, in the SS-MRPT approach of Mukherjee and
co-workers [60–63], derived from SS-MRCC, the combining
coefficients are iteratively updated, which lends an intrinsic
accuracy to the perturbed function: termed as relaxed coeffi-
cient variety.

Obviously, the most popular and the simplest MR refer-
ence approach is the MR configuration interaction (MRCI)
method [96–98]. It is, however, not rigorously extensive in
a truncated CI space. Much effort has been expended to-
wards developing the method to make it applicable to large
systems and to remove the lack of size-extensive, in a way ex-
actly analogous to the SR-based CI strategies [11,16,17,20,
99–102]. For recent review and analysis of the various state-
specific CEPA, ACPF and AQCC methods, we refer to the
article by Szalay [ 20]. In the framework of effective
Hamiltonians, Tanaka and co-workers [ 103–105] have pro-
posed SU-like MRCEPA methods derived from an effective
Hamiltonian formalism. We have already emphasized earlier
the potential danger of the intruder problem in an effective
Hamiltonian-based formalism.

In this paper, we will present a set of explicitly CAS-based
spin-free SS version of MR-CEPA (SS-MRCEPA) methods
based on the manifestly spin-free SS-MRCC theory. We will
describe three variants of spin-free SS-MRCEPA method
starting from full-blown explicitly spin-free SS-MRCC
method. Among the three, two are invariant with respect
to the restricted rotations of core, active and virtual
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orbitals : (1) SS-MRCEPA(0), a purely liberalized version of
the SS-MRCC theory, (2) SS-MRCEPA(I), which includes
all the EPV terms explicitly and exactly in an orbital invari-
ant manner. Another variant is termed as SS-MRCEPA(D),
which arises by keeping only the diagonal terms of a set of
dressed operators in the working equations. The formulation
of SS-MRCEPA(D) is inspired by a previous formulation of
CEPA-like variant of Malrieu and co-workers [ 12–14]. The
SS-MRCEPA methods will be applied to compute PES of
states of LiH and HF involving open-shell functions. In all
the states studied, there are potential intruders in the effective
Hamiltonian-based formalisms at some region of the PES and
there is quasi-degeneracy at some other region of the PES.

This paper is organized as follows: in Sect. 2.1 we will
first describe the formulation of the spin-free SS-MRCC the-
ory. We will discuss the spin-free formulation of SS-MRCEPA
methods starting from the CAS-based SS-MRCC theory in
Sect. 2.2, respectively. Section 3 covers the discussion of
numerical implementation. In Sect. 4, we will present the
illustrative numerical applications, along with discussions.
Finally, Sect. 5 will summarize our presentation.

2 Theoretical background

We begin this section by emphasizing the basic issues re-
lated to our formulation of the SS-MRCC theory [ 49–52]
formulated by us.

2.1 The SS-MRCC formalism with the complete model
space

In the SS-MRCC approach, the exact wave function of a given
spin is expressed as:

ψ =
∑

μ

exp
(
Tμ

)
φμcμ. (1)

Each model space function,
{
φμ

}
is a CSF, in a given spin-

coupling scheme and together spans a CAS (equivalently
called CMS). In our earlier presentations [ 49–52], we did not
address the theoretical aspects of spin-adaptation of the SS-
MRCC equations, since we always worked previously with
model functions which were closed-shell singlets. The CSFs
thereby reduce to closed shell determinants. The spin-adap-
tation of the equations in such cases is straightforward and
trivial, entirely analogous to the one for the case of closed-
shell SRCC. Recently, we have developed a spin-adapted
version of the SS-MRCC theory [ 63], where the model func-
tions are neither necessarily singlets nor single determinants.
The model functions are, in the general formalism, genuine
multi-determinant CSFs. We briefly discuss here the general
formalism of the SS-MRCC method, since we want to gener-
ate a spin-adapted SS-MRCEPA formalism from the parent
spin-adapted SS-MRCC method. The detailed nature of the
coupling scheme is not important as long as each CSF is
generated with respect to some base CSF by excitation via
spin-free unitary generators.

Following the standard terminology, we will call ‘inac-
tive holes’ the inactive occupied orbitals, doubly filled in
every model CSF. The ‘inactive particles’ will refer to all the
orbitals unoccupied in every CSF. Orbitals which are occu-
pied in some (singly or doubly) but unoccupied in others are
the ‘active’ orbitals. In our spin-free form, the labels are for
orbitals only, and not for spin orbitals. By the very defini-
tion, no active orbital can be doubly occupied in every model
CSF. We want to express the cluster operator Tμ, inducing
excitations to the virtual functions, in terms of excitations of
minimum excitation rank, and at the same time wish to repre-
sent them in a manifestly spin-free form. To accomplish this,
we take as the vacuum – for excitations out of φμ – the larg-
est closed-shell portion of it, φ0μ. For each such vacuum, we
redefine the holes and particles, respectively, as ones which
are doubly occupied and unoccupied in φ0μ. The holes are
denoted by the labels iμ, jμ, . . . etc, and the particle orbi-
tals are denoted as aμ, bμ, . . . etc. The particle orbitals are
totally unoccupied in anyφμ, or are necessarily active orbitals
which are singly occupied in φμ. When we want to distin-
guish these singly occupied active orbitals, we shall denote
them by uμ, vμ, . . . etc. We note here that the holes in φ0μ
include not only the doubly occupied inactive orbitals but
also doubly occupied active orbitals of φμ. We will be using
the terminology ‘active’ and ‘valence’ often interchangeably.
In most of our discussions, we will often be discussing the
various terms generated by the SS-MRCC theory referred to
a particular vacuum φ0μ, and we then drop the subscript μ
from the orbital labels when it is clear which vacuum we are
dealing with.

At this point, we would like to emphasize one of the
non-trivial circumstances that emerges during the develop-
ment of completely spin-free SS-MR theory. It was generally
mentioned that in the development of such a theory for the
closed-shell situations, the use of φμ as the vacuum is not
a problem, since the spin-adaptation in such cases is a triv-
ial issue. However, the general spin-adaptation of open-shell
states of arbitrary multiplicity is not an easy task. For non-
singlet, or even an open-shell singlet φμ, we cannot use this
as the vacuum, since either it would lead to a spin-broken
solution or to a rather complicated situation, since φμ is a
CSF rather than a determinant. In an attempt to maintain the
generality of the approach and simultaneously develop a via-
ble theory suited to deal with arbitrary spin situations, we put
forth an alternative scheme which uses specific closed-shell
vacuum and suitable spin-free unitary generators. Actually,
we choose the highest doubly occupied portion of a function
φμ, which we represent as φ0μ, as the vacuum for every φμ.
We define all excitations with respect to this only. We would
further show that the choice of such a definition makes the
mathematical manipulation of the resulting equations easy. It
has emphasized earlier that to maintain the size-extensivity
of our theory, we need to treat Tμs and T νs democratically
in the coupling term of the cluster finding equation. How-
ever, the foregoing discussion on the latest definition of vac-
uum might give an apparent feeling that the cluster excitation
operators are not being treated on the same footing. But we
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would soon show that once they are written with respect to
the core as vacuum, this apparent problem would be allevi-
ated. Once the cluster amplitudes are defined with respect to
φ0μ as the vacuum, one can also rewrite all the requisite exci-
tations in normal order with respect to the core being taken
as the vacuum. In fact it will transpire that the spin-free oper-
ators , written in terms of Unitary generators, involve only
spectator excitations with respect to φ0μ as vacuum. They are
‘particles’ both with respect to φ0μ and the core, and hence,
if we rewrite the cluster operators with respect to the core,
then the normal ordering remians unaltered. Hence

{E}0μ ≡ {E}core

where {. . .} represents the normal ordering.
The general problem of spin-adaptation using multiple

vacuua φ0μ, depending upon the model function φμ the com-
ponent of the wave operator exp(Tμ) acts upon, is quite a
nontrivial and rather involved exercise. Here, we will con-
sider the simplest yet physically the most natural truncation
scheme in the rank of cluster operators Tμ, where each such
operator is truncated at the excitation rank two. For generat-
ing the working equations for the spin-adapted theory in this
case, it is useful to classify the various types of excitation
operators leading to various virtual CSFs as:

One-body:
(A) hole → particle (h→p): tμa

i {Ea
i }

(B) hole → valence (h→v): tμu
i {Eu

i }
(C) valence → particle (v − p): tμa

u{Ea
u }

Two-body:
(D) 2h → 2p : tμab

i j {Eab
i j }

(E) h,v → 2p: tμab
iu {Eab

iu }
(F) 2h → p,v: tμau

i j {Eau
i j }

(G) 2v → 2p: tμab
uv{Eab

uv }
(H) h,v → p,v: tμav

iu {Eav
iu } and tμva

iu {Eva
iu }

(I) 2v → p,v: tμwa
uv {Ewa

uv }
(J) 2h → 2v: tμuv

i j {Euv
i j }

(K) h,v → 2v: tμwx
iu {Ewx

iu }
In all the excitations above, the operators E in curly brack-

ets denote the normal ordering with respect to φ0μ, and the
‘local’ holes, valence and particles are all defined with respect
to this vacuum. Interestingly, the two-body operators of the
type {E Xu

Y u } for arbitrary labels X, Y generate the same exci-
tation as the one-body operator {E X

Y } on φμ, since {Eu
u } is the

number operator with occupancy 1 forφμ for singly occupied
active orbitals. This can be easily verified:

{E Xu
Y u }φμ = {E X

Y }{Eu
u }φμ (2)

= {E X
Y }φμ (3)

Hence, we should include only one of them in our Tμ. We
choose the strategy that Tμ will never have excitations of
the type {E Xu

Y u }, which we will, henceforth, term as exci-
tations with direct spectators u. However, in contrast, the
excitations of the type {Eu X

Y u }, involving exchange type of
spectator excitations are linearly independent of {E X

Y }, as
far as their respective actions on φμ are concerned, and we

should keep both such operators in Tμ. Moreover, while con-
sidering excitations inducing Y → X from φμ, we will add
together contributions from both the one-body and the two-
body excitations {E X

Y } and {E Xu
Y u } for all u singly occupied in

φμ. Although the Ansatz for the wave operator has a super-
ficial resemblance to the JM Ansatz [ 35], unlike the JM An-
satz, it is in spin-free form, and also has non-commuting
operators involving exchange spectators. The detailed alge-
braic structure of our spin-free SS-MRCC formalism would
thus be different from the more special case involving closed-
shell model functions only.

For a function ψ with a given spin-multiplicity (2S+1),
we shall consider all the CSFs with Ms = (2S+1), gener-
ated from some ‘base’ or ‘fiducial’ CSF φR , with inactive
occupied orbitals doubly filled, some active orbitals doubly
filled, a set ns of active orbitals with up-spin, a set ns of
orbitals with down-spin, coupled to a singlet, and another set
of active orbitals, all with up-spin such that Ms = (2S+1).
With this generation scheme, every model CSF can be writ-
ten as some spin-free excitation operator acting on the base
function φR .

In the SS-MRCC formalism, there is a redundancy in
the cluster amplitudes of Tμ, in the sense that each virtual
CSF, χl , can be generated from several model CSFs. We will
impose suitable supplementary sufficiency conditions with
the twin objectives of avoiding intruders and maintaining
size-extensivity.

To derive the spin-adapted SS-MRCC equations in the
SD truncation scheme of the cluster operators, we rewrite
the Schrödinger equation for ψ as follows:

H
∑

μ

exp(Tμ)|φμ〉cμ =
∑

μ

exp(Tμ)Hμ|φμ〉cμ

= E
∑

μ

exp(Tμ)|φμ〉cμ, (4)

where Hμ is the similarity-transformed Hamiltonian
exp(−Tμ)H exp(Tμ). Introducing the projectors P and Q,
respectively, for the model and the virtual spaces, and noting
the resolution of identity I = (P + Q), we can write the
above equation in long hand as:
∑

μ

exp(Tμ)Q Hμ|φμ〉 +
∑

μ,ν

exp(Tμ)|φν〉〈φν |H |φμ〉cμ

= E
∑

μ

exp(Tμ)(P + Q)|φμ〉cμ. (5)

Using the same insight gleaned from our earlier SS-MRCC
formulation in the spin orbital basis in terms of determinants,
we interchange the dummy arguments in the second term on
the left hand side of the above equation, and get
∑

μ

exp(Tμ)Q Hμ|φμ〉 +
∑

μ,ν

exp T ν |φμ〉〈φμ|H ν |φν〉cν

= E
∑

μ

exp(Tμ)(P + Q)|φμ〉cμ. (6)

We now equate the Q projections on both sides of the above
equation for each μ, and premultiplying with 〈χl | exp(−Tμ)
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∀ l, we get

〈χl |Hμ|φμ〉cμ +
∑

ν

〈χl | exp(−Tμ) exp(T ν)|φμ〉H̃μνcν

= 0 ∀ l, μ, (7)

where H̃μν = 〈φμ|H ν |φν〉. The equations derived above are
our principal working equations for the cluster amplitudes of
Tμ, inducing single and double excitations out of each φμ
to all possible χl . As we have emphasized earlier, for every
single excitation of the type {E X

Y }, with Y �= u, we take both
the one-body and the two-body excitations {E X

Y } and {E Xu
Y u }

that are generated by {Hμ} and [exp(−Tμ) exp(T ν)] in the
above equation. The equation determining the model space
coefficients {cμ} and the target state energy is given by:
∑

ν

H̃μνcν = Ecμ. (8)

For computing all the matrix-elements, we rewrite H in nor-
mal order with respect to the corresponding φ0μ as the vac-
uum:

H = 〈φ0μ|H |φ0μ〉 + {F} + {V }, (9)

where

{F} =
∑

μ,ν

f XY
0 {E X

Y } (10)

and

f XY
0 = f XY

c +
∑

ud

[
2V Xud

Y ud
− V ud X

Y ud

]
. (11)

In the equation above, fc is the core Fock operator, and sum
over ud runs over all the doubly occupied active orbitals of
φμ. {V } is the two-body portion of H in normal order with
respect to φ0μ. We do not explicitly indicate here and later
which φ0μ has been used as the vacuum, since it would be
clear from the functions the operators act upon.

The proof of the size-extensivity of the cluster ampli-
tudes of Tμ follows essentially the same steps as had been
taken earlier by us in the spin orbital-based formulation with
determinants. We briefly recapitulate the steps here, both for
the sake of completeness and for setting the scenario for the
SS-MRCEPA developments to follow.

If the cluster operator Tμ is connected, one can easily
verify that the dressed Hamiltonian Hμ and the matrix ele-
ments H̃μν are also connected via multi-commutator expan-
sion. The proof of the connectedness of the first term of Eq.
(7) is thus quite straightforward. But this is nontrivial for the
second term. The term 〈χl | exp(−Tμ) exp(T ν)|φμ〉 can be
written as: 〈χl | exp{(T ν − Tμ)+ 1

2 [T ν, Tμ]+ · · · }|φμ〉. All
the terms involving commutators [Tμ, T ν] are non-vanish-
ing when some active orbitals are occupied in φμ and unoc-
cupied in φν and vice versa, and thus must be labelled by
orbitals distinguishing φμ and φν . Since H̃μν is labelled by
all the active orbitals distinguishing φμ and φν , its products
with the terms involving the multi-commutators have com-
mon active labels and are all connected. Demonstrating the

connectivity of the term containing (T ν − Tμ) is, however,
rather tricky. Since, in the SS-MRCC theory, all the model
space functions are treated on the same footing, all being
generated from the base function φR in the same manner,
the cluster operators T ν and Tμ have the same functional
form and consequently the difference, (T ν − Tμ), also has
common labels with the matrix H̃μν . As a result of this, the
second term of Eq. (7) is connected as a whole. This aspect is
very important while formulating size-extensive approximate
methods, such as SS-MRCEPA, from the parent SS-MRCC
theory.

We will now derive the size-extensive SS-MRCEPA-like
approximants from the spin-free SS-MRCC equations pre-
sented above.

2.2 Emergence of the SS-MRCEPA methods from
SS-MRCC

Before the presentation of the theoretical development of our
recently developed explicitly spin-free SS-MRCEPA meth-
ods, we discuss certain theoretical issues of SR-CEPA
methods which are essential to understand the physical moti-
vation of various approximations needed to generate the SS-
MRCEPA scheme from the full-blown SS-MRCC theory.

2.2.1 An overview of SRCEPA method

In this section, we underline the approximations invoked to
generate the SR-based CEPA schemes from the parent SRCC
equations. For the sake of easier understanding of basic rela-
tions, we neglect the single excitation for now, i.e. we con-
sider the CCD model. We start with a Restricted Hartree–
Fock (RHF) reference function φ0, and a correlated wave
function: ψ = exp(T2)|φ0〉, where T2 = ∑

a Tata (the index
a denotes the electron pairs). After simple manipulation, we
obtain the following equations:

E = 〈φ0|H |φ0〉 +
∑

b

〈φ0|H Tb|φ0〉tb (12)

Eta = 〈χa |H |φ0〉 +
∑

b

〈χa |H Tb|φ0〉tb

+1

2

b �=b′∑

b, b′
〈χa |H TbTb′ |φ0〉tbtb′ . (13)

Combining the above two equations results in the following
expression:

〈χa |H |φ0〉 =
∑

b

[〈φ0|H |φ0〉δab − 〈χa |H Tb|φ0〉]tb

+
∑

b

〈φ0|H Tb|φ0〉tbta

+1

2

b �=b′∑

b, b′
〈χa |H TbTb′ |φ0〉tbtb′ . (14)



Towards the development and applications of manifestly spin-free multi-reference coupled electron-pair approximation-like methods 627

After the cancellation of the disconnected terms in the last
two terms of the above equation, the rest of the CCD equa-
tions have connected terms only, in the sense that no term can
be factorized into two components having no orbitals in com-
mon. One set of such terms originate from quadruple exci-
tations via power of cluster operators, while the other stems
from double excitations. These latter are the EPV terms. All
CEPA methods neglect the terms with multiple excitations,
but retain the EPV terms. The above equation can be written
as follows:

〈χa |H |φ0〉=
∑

b

[(〈φ0|H |φ0〉+�b)δab−〈χa |H Tb|φ0〉].
(15)

Several methods have been suggested to include EPV terms,
�, to various degrees. These form the suite of the SR-CEPA
methods [ 18]. The CEPA(0) corresponds to ignoring entirely
the term � in Eq. (15), CEPA(0) approximation is equiv-
alent to linearized CCD. The CEPA(0) method is not ex-
act for the two-electron problem. The ‘diagonal dressing’
of Malrieu and co-workers [ 12–14] (to be called CEPA(D)
from now on) involves the most complete inclusion of the
EPV terms, by retaining all the terms in � in the projec-
tion onto χ pq

αβ [it is important to note that in χa , a denotes
electron pairs, but here we are explicitly showing the la-
bels for electron pairs] which have at least one orbital in
common with α, β, p and q . In the SRCCD context, this
amounts to keeping in the quadratic terms, one T2 amplitude
with the labels α, β, p, q , and the other having at least one
of the labels of the first T2. This amounts to approximating
1/2〈χ pq

αβ |[H, T2], T2]|φ0〉 as [−�t pq
αβ ], where� has the value

as given in reference [ 12–14]. When the singles are included,
the CEPA-like approximations are modified by including all
the linear and quadratic powers of T1. The MR-CEPA for-
mulation using the same concept within the SS framework
would be presented in the next section.

2.2.2 Theoretical development of SS-MRCEPA methods

While considering the aspects of spin-adaptation for the gen-
eral SS-MRCC case – where the spin-free excitations con-
taining exchange spectator scattering of the singly occupied
active orbitals of a CSF φμ have to be included in the cluster
operators of Tμ, and the blocks inducing the same scatter-
ing by their actions on φμ have to be added together, we
will have to do exactly the same thing to generate the spin-
free expressions for SS-MRCEPA methods. In fact, the SS-
MRCEPA methods follow from some low order truncation
of the spin-free versions of the SS-MRCC theory, so all the
considerations discussed for the general SS-MRCC case re-
main operative and valid for the SS-MRCEPA case.

For the development of various CEPA-like approximants
starting from the full-blown SS-MRCC equations (Eq. 7),
we present the leading terms of the Eq. (7) explicitly in the

following form:

[〈χl |H |φμ〉+〈χl |[H, Tμ]|φμ〉+1

2
〈χl |[[H, Tμ], Tμ]|φμ〉]cμ

I II III

+
∑

ν

〈χl |(T ν−Tμ)|φμ〉H̃μνcν+other terms=0.

IV

(16)

If we suppress the fourth term (the so-called coupling term)
on the left hand side of the above equation, then, from the
point of view of the particular reference function φμ, we
obtain the equation of the corresponding SR-case. The only
difference is that certain amplitudes responsible for excita-
tions within the model space are excluded from the equation
of the cluster operators. The first three terms are connected in
nature provided the cluster operator Tμ is connected. Since
we adopt the same philosophy as that of SR-CEPA, the χls
in the Eq. (16) must be doubly excited for each φμ. As we
have already mentioned, the two parts in the coupling term
(term IV) should be treated on the same footing to maintain
the size-extensivity of the full-blown SS-MRCC theory and
any approximate theory starting from it.

The simplest CEPA-like approximation will follow from
Eq. (16) if we keep only the linear terms in the cluster ampli-
tudes. This CEPA has been called by us as the SS-MRCEPA(0)
54. Written in long hand, it amounts to:

〈χl |H |φμ〉cμ +
∑

m

〈χl |
(
H − Hμμ

) |χm〉tm
μ cμ

+
∑

ν

〈χl |
(
T ν − Tμ

) |φμ〉Hμνcν = 0, (17)

where the sum over m covers all the SD functions with respect
to φμ, and Hμμ = 〈φμ|H |φμ〉. If we start from a CAS-SCF
energy E0, with coefficients {cμ} (

∑
ν Hμνcν = E0cμ), then

Eq. (17) can be simplified to:

〈χl |H |φμ〉cμ +
∑

m

〈χl | (H − E0) |χm〉tm
μ cμ

+
∑

ν �=μ
t l
μ(ν)Hμνcν = 0, (18)

where t l
μ(ν) denotes the amplitude of the specific excitation

present in T ν , which excites toχl by its action onφμ. We have
also used in the above equation the simplified notation t l

μ for
t l
μ (μ). The second term indicates that t l

μ will be dominated
(in the perturbative sense) by the ratio 〈χl |H |φμ〉/ (E0 − Hll)
and will be intruder-free if the CAS energy E0 is away from
the virtual function energies Hll ≡ 〈χl |H |χl〉. On the other
hand, an equation containing only the first two terms for
determining t l

μ will have entailed disconnected non-EPV
(NEPV) terms. Concretely speaking, the term E0t l

μcμ can
be written as:

E0t l
μcμ =

∑

ν

t l
μHμνcν. (19)
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If this excitationμ → l onφμ is also an allowed process onφν
by Pauli exclusion principle, then the corresponding excita-
tion involves orbitals which are not among those distinguish-
ing φμ and φν . Such terms are then disconnected. However,
for every such φν where this is true, there is a counter term in
t l
μ (ν) Hμνcν , which together leads to

(
t l
μ (ν)− t l

μ

)
Hμνcν for

all suchφμ’s, and – as explained in Sect. 2.1 – since the differ-
ence

(
t l
μ (ν)− t l

μ

)
is labeled by some or all orbitals distin-

guishing φμ and φν ,
(
t l
μ(ν)− t l

μ

)
Hμνcν is a connected term.

Hence, such an approximation, termed as SS-MRCEPA(0) by
us, is the simplest among the CEPA-like approximants to the
SS-MRCC theory which is extensive and also avoids intrud-
ers. However, the appearance of the CAS energy E0, rather
than the ground state energy E itself renders it rather approxi-
mate. As we already mentioned, the complete linearity of the
SS-MRCEPA(0) equations in the cluster amplitudes lends
the same invariance property to it as in the MR-CISD. This
parallels the situation in the single reference CEPA(0), which
also possesses the invariance. In our earlier papers [ 54–59],
we suggested other schemes where E appears which, how-
ever, did not have the orbital invariance property as that of
the SS-MRCEPA(0).

We will now go on to present an SS version of MRCEPA
method starting from the Eq. (7) using the same spirit of Mal-
rieu and co-workers as done in the SR [ 12–14]. The method
is termed by us as SS-MRCEPA(D)[D stands for ‘diagonal
dressing’]. The SS-MRCEPA(D) [ 56–59] has close resem-
blance to the MR-(SC)2CI method of Malrieu and co-work-
ers [ 77–79]. Since we adopt the same philosophy as that of
SR-CEPA(D) of Malrieu and co-workers [ 12–14] (usually
termed as the (SC)2CISD), the EPV terms coming from term
III in the Eq. (16), must include the product of the cluster
operators in such a way that the excitation involved in one
Tμl has at least one orbital in common with those involved in
the other Tμl . Thus, we present the leading terms of Eq. (16)
explicitly in the following form:

[〈χl |H |φμ〉+∑
m
(Hlm −Hμμδlm)t

μ
m −�μtμl

I II III(a)

+ 1
2

′∑
m,n

gl
m,ntμm tμn ]cμ +∑

ν

〈χl |T ν |φμ〉H̃μνcν

III(b) IV(a)

+ other terms=E tμl cμ.
IV(b)

(20)

The negative sign of the term �μ is the EPV correction in
III(a) in Eq. (20) to keep conformity with the analogous SR
term. The term III(b) confined to the product of two singles
(which is indicated by the prime in the sum) leads to the dou-
bles. The two pieces IV(a) and IV(b) serve two specific and
distinct purposes. A portion of the term in IV(a) for ν = μ:

H̃μμ = Hμμ +�l
μ + Dl

μNEPV (21)

cancels both Hμμδlm and �μtμl terms of II and III(a), while
the rest of the expression for ν �= μ of IV(a) corrects for
the lack of extensivity coming from the terms appearing in

E tμl cμ. As Malrieu and co-workers [ 12–14] have done in
(SC)2CI method, we approximate�μ by the terms containing
all Tμs with at least one orbital in common with those appear-
ing in tμl .�μ in each equation for tμl is thus l-dependent, and
we indicate this by �l

μ. Denoting the energy E as ECEPA(D),
Eq. (20) for this scheme, referred to as SS-MRCEPA(D),
takes the form:

[〈χl |H |φμ〉+
∑

m

[Hlm − (ECEPA(D) + Dl
μNEPV)δlm]tμm

+1

2

′∑

m,n

gl
m,ntμm tμn ]cμ +

∑

ν �=μ
〈χl |T ν |φμ〉H̃μνcν = 0, (22)

where E satisfies the equation
∑

ν

H̃μνcν = Ecμ.

The diagonal matrix element of H̃ , used to find the energy
has the following form:

H̃μμ = 〈φμ|(H + H Tμ1 + H Tμ2 + 1

2

∑

m,n

gl
m,ntμ1mtμ1n)|φμ〉

and the off-diagonal matrix element of H̃ corresponding to
this scheme looks like:

H̃νμ = 〈φν |(H + H Tμ1 + H Tμ2 + 1

2

∑

m,n

gl
m,ntμ1mtμ1n

+1

2

∑

m,n

gl
m,ntμ2mtμ2n)|φμ〉.

We have not considered the quadratic terms in our prelimi-
nary applications of SS-MRCEPA(D) method in this paper.

We now discuss the most recent version of SS-MRCEPA
[ 54,55] that has the state energy E , rather than the CAS
energy E0 in the working equation, but – unlike in
SS-MRCEPA(D) – this has the orbital invariance property.
We call this as the SS-MRCEPA(I), with ‘I’ indicating the
orbital invariance property of the formulation. The interesting
aspect of this formalism lies in the presence of a set of nonlin-
ear terms in the cluster amplitudes having a special structure
which ultimately leads to the desired orbital invariance prop-
erty. In this, Hμ appearing in 〈χl |Hμ|φμ〉cμ is approximated
by all of those terms that lead to single and double excitations
out of φμ. Thus the expansion gets naturally truncated at the
double commutator for Tμ1 for the singles, and at the single
commutator for Tμ2 for the doubles. These terms bear a strik-
ing resemblance with those corresponding to an MR-CISD
formulation and would retain the orbital invariance. For the
coupling term, 〈χl | exp(−Tμ) exp(T ν)|φμ〉H̃μνcν , the first
factor is approximated by all terms that lead toχl from φμ via
single and double excitations. Thus, for single excitations, the
first factor is 〈χl |

(
T ν1 − Tμ1

) |φμ〉, while for the double exci-

tations it is 〈χl |
(

1
2 T ν

2

1 + 1
2 Tμ

2

1 + T ν2 − Tμ2 − Tμ1 T ν1

)
|φμ〉.

This factor would thus preserve its form upon rotations of
the active orbitals, because the transformed functions in the
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model and virtual spaces continue to remain connected
through the single and double excitations only. In our pre-
vious formulations of the SS-MRCEPA [ 56–59], the second
factor in the coupling term was H̃μν where only the diagonal
parts of the dressed operator H̄μ were included. This then
amounted to the lack of invariance of this factor with respect
to the orbital transformations. In the present formulation,
we exclude all such terms and approximate H̃μν in a way
analogous to the first term of Eq. (7). Thus, we have H̃μν
expressed as:

H̃μν = 〈φμ|H + {[H, T ν] + 1

2
[[H, T ν], T ν]}SDν |φν〉, (23)

where { }SDν denotes single and double excitations out of
φν . The invariance of the second factor of the coupling term
is preserved, as is evident from the structural equivalence
of this with those of the model projections of an MR-CISD
equations. Collecting all the terms, the SS-MRCEPA(I) can
be written as:

〈χl |H |φμ〉cμ+〈χl |{[H, Tμ]+ 1
2 [[H, Tμ], Tμ]}SDμ |φμ〉cμ

I II

+∑
ν〈χl |{(T ν − Tμ) + 1

2 (T
ν−Tμ)2

III

+1

2
[T ν, Tμ]}SDμ|φμ〉H̃μνcν = 0

with
∑

ν

H̃μνcν = Ecμ. (24)

All the components of III with only Tμ operator can be com-
pactly written as:

X = 〈χl |{−Tμ + 1

2
Tμ

2}SDμ|φμ〉Ecμ (25)

X contains both the EPV terms and the disconnected non-
EPV terms. We now classify the non-EPV terms as: (1) those
belonging to the CISD space relative to the CAS, induced by
products of powers of Tμ and T ν , acting on φν itself, and
(2) those which are outside the CISD space and are discon-
nected, again induced by similar products of operators as in
(1). Interestingly enough, the entire term III in Eq. (24) is a
connected quantity, ensuring extensivity by eliminating the
inextensivity arising from the term X by the counter-terms
containing at least one T ν . The terms I and II are invari-
ant under the restricted orbital transformations as have been
emphasized earlier. The full term III is also invariant as it
involves a total sum over all the functionsφν of the CAS. This
approach thus uses the dressed Hamiltonian H̃μν , unlike the
SS-MRCEPA(0) which uses the bare Hμν and hence might be
viewed as a minimal extension of the SS-MRCEPA(0). More-
over, SS-MRCEPA(I) is a step forward since it uses a self-
correcting set of terms in 〈χl | exp(−Tμ) exp(T ν)|φμ〉H̃μν
which leaves not only the EPV terms but also cancels the
inextensivity in an orbital invariant manner arising out of the
non-EPV terms. We also note that the non-EPV terms outside
the CISD space, mentioned in (b) above, generated in the term

III of Eq. (24) are not fully eliminated; rather, their size-
inextensive component is eliminated. This, in effect, is the
minimal expasion beyond the MR-CISD space that is crucial
to preserve the orbital invariance. With Eq. (24) we define
SS-MRCEPA(I) scheme to the full-blown SS-MRCC. The
aspect of size-extensivity is retained in all our SS-MRCEPA
methods since Tμ and T ν are treated on the same footing
while truncating [exp(−Tμ) exp(T ν)].

In the SS-MRCEPA theories, all the reference functions
are treated democratically. They are thus quite useful for the
computation of the energies of states associated with varying
degrees of degeneracy among the the model space functions
over wide range of geometries. Our SS-MRCEPA methods
are free from the objections of the instability of working equa-
tions due to the intruder state effects akin to the parent SS-
MRCC method. The analysis follows the same route as was
taken to show avoidance of intruders in the parent SS-MRCC
theory [ 49–52]. The denominator of the leading terms of the
cluster finding operator of the SS-MRCEPA method involves
a difference of the target state energy itself and the energy of
the virtual functions which are closely spaced with the refer-
ence space functions. It is important to mention the fact that
our theories are free from the intruder effects as long as the
target state is energetically well separated from the virtual
functions. Thus the SS-MRCEPA theories are very effective
to generate the PES over a wide range of nuclear geometries.

Let us now discuss certain general features of our
SS-MRCEPA formalisms in order to put them in a proper
perspective in relation to other allied formalisms. Unlike
MR-ACPF [ 11] and MR-AQCC methods [ 16,17], which
use an MR starting function with frozen coefficients, our
methods have the flexibility of either using frozen coeffi-
cients or – as is usually done – the relaxed ones obtained
on diagonalization of the effective operator. The real advan-
tage of the SSMR theories over the unrelaxed theories in
vogue may be understood if we consider the case of mixed
states, e.g. those electronic states which have different con-
tributions of the valence and Rydberg components, or have
varying covalent and ionic characters, which change strongly
as a function of nuclear coordinate. The relative importance
of different configuration types depends sensitively on the
coupling of the dynamical and non-dynamical correlations,
thereby revising the frozen coefficients of the starting func-
tions considerably. Clearly a formalism allowing relaxation
of the model space coefficients in the correlated treatment
provides the conceptually correct description of this mixing.
Except the SS-MRCEPA(0) method, all the other versions of
SS-MRCEPA proceed via iterative update of the reference
space coefficients and thereby energy is computed via the
diagonalization of the dressed Hamiltonian within the model
space. Hence, the coefficients are completely relaxed. Even
the SS-MRCEPA(0) which is devoid of iteratively explicit
relaxation of the coefficients, incorporates the effect of relax-
ation during the course of diagonalization of the dressed
Hamiltonian constructed within the model space to get the
energy of the target state.

The multi-reference dressed CISD methods of Malrieu
and co-workers [ 77–79] are conceptually akin to our
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SS-MRCEPA methods. As we have discussed, the CEPA
methods can be viewed either as extensivity corrected CI or
as truncated versions of CC retaining only the EPV terms. In
the dressed CI formalism the space of the dressed MR-CISD
matrix is the same as in the ordinary MR-CISD method. This
is in contrast to our SS-MRCEPA methods where, due to
the redundancy of the cluster amplitudes, the same virtual
function may be reached from various model functions φμ
through the respective cluster operators in Tμ. In the method
of Malrieu and co-workers [ 77–79] the redundancy is elimi-
nated by way of introducing suitable weight factors ρμl . This
emphasizes the genealogy of the coefficient cl of a virtual
function χl , as a weighted sum

cl =
∑

μ

tμl cμ ≡
∑

μ

ρ
μ
l cl with ρ

μ
l = tμl cμ∑

ν tνl cν
. (26)

As we have commented in an earlier paper 54–59, we can
envision generating an SS-MRCEPA(D) formalism where
the weight factors can be introduced to eliminate the redun-
dancy. However, as emphasized there, the kind of counter-
terms automatically entering the SS-MRCEPA theory are
such that the dressing would have to be a column dressing,
rather than diagonal dressing. In fact, the diagonal dress-
ing used by Malrieu and co-workers [ 77–79] stems from an
empirical elimination of the disconnected non-EPV terms.
For an extensive discussion we refer to one of our earlier
papers [ 54–59].

It is interesting to discuss at this stage how the different
SS-MRCEPA schemes introduced here reduce to the corre-
sponding SR-CEPA schemes in the limit when there is only
one function in the model space. It is obvious that the SS-
MRCEPA(0) would go over to the SR-CEPA(0) or LCCSD
if only the linear cluster operators are retained in our SS-
MRCEPA(0). The orbital invariance of the SS-MRCEPA(0)
thus carries over to the SR-CEPA(0) in a straightforward
manner. The SS-MRCEPA(I) has the set of orbitally invariant
terms III in Eq. (24). When there is only one model function
φμ, the SS-MRCEPA(I) reduces to

〈χl | H |φμ〉+〈χl |
{[

H, Tμ
]+ 1

2

[[
H, Tμ

]
, Tμ

]}

SDμ
|φμ〉=0,

which is again just the SR-CEPA(0) in the CI language.
Again, the orbital invariance property is manifest. In the pres-
ence of strong quasi-degeneracy, however, SS-MRCEPA(I) is
more flexible and incorporates more physical effects as com-
pared to the SS-MRCEPA(D), and hence, would be a more
appropriate choice in such a situation. The SS-MRCEPA(D)
reduces in the SR limit to just the SR-CEPA with all EPV
terms included, analogous to the (SC)2CISD method of Mal-
rieu and co-workers [ 12], which is not orbitally invariant.

3 Numerical implementation

We now discuss the computational strategy leading to the
numerical implementation of SS-MRCEPA methods.
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Fig. 1 In the above diagrammatic equations, i represents the set of inac-
tive core orbitals, a, b, . . . are members of the set of either an active or a
virtual orbital (represented by an encircled arrow), and u, v, . . . ∈ {φμ}
denote purely active set of orbitals inducing the spectator excitations

Two sets of variables, the cluster operators, Tμs and
the combining coefficients, cμs constitute the SS-MRCEPA
equations in a coupled form. For every φμ, there are two sets
of operators in Tμ: (a) pure excitation operators without spec-
tators and (b) excitation operators with exchange spectators.
Generally, the working equations are of the form as shown in
Fig. 1.

In the diagrammatic equations in Fig. 1, the hatched blocks
correspond to the various connected composites of the SS-
MRCEPA methods, and Eqs. (A)–(C) show that the block
containing the direct spectators are to be added to a lower
rank block without the spectators, since both lead to the same
excitations to φμ and hence are linearly dependent. The Eq.
(D) is for the term with exchange spectator only, and there
is no lower rank block which is linearly dependent. Equa-
tion (E) represents the pure ladders with exchange spectator
excitations from φμ.

We now discuss the organizational strategy for solving
the equations in a stable and rapidly convergent manner. Two
levels of nested iterations are used for this purpose. The out-
ermost loop (macro-iteration cycle) updates the coefficients
cμ by diagonalizing the effective operator obtained from the
converged cluster amplitudes of the inner (micro) iteration.
In the micro-iteration, with fixed coefficients, a loop is ini-
tiated over μ to compute the amplitudes of Tμ, keeping the
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amplitudes of all T νs, ν �=μ frozen. The macro-iteration up-
dates the coefficients only after the local convergence of all
the cluster amplitudes is reached. We emphasize here that
the couplings between the various cluster amplitudes in the
SS-MRCEPA equations are not too many. Only those com-
ponents of tνs can couple with μ �=ν, which can result in
excitations to χl by their action on φμ. Let us also note that
there is no macro-iteration for SS-MRCEPA(0). However,
the energy is obtained via the diagonalization of the effective
operator and hence uses relaxed coefficients with the clus-
ter amplitudes being obtained from initial coefficients of the
reference functions.

In our implementation, we use the same tolerance, η(μ)
(10−8) for different cluster amplitudes tμi . When the δ(μ)= |
t i
μ(new) − t i

μ(old) | ∀ l, μ becomes smaller than the toler-
ance, convergence is reached. In the iteration loop for obtain-
ing the cluster amplitudes, when the condition δ(μ) ≤ η(μ)
is reached for the cluster amplitude t i

μ, the t i
μ amplitude is

frozen, while the iteration process is started for the other clus-
ter amplitude t i

ν , with μ �=ν, till the condition δ(ν)≤η(ν) is
attained.

4 Results and discussions

Calculations are presented in this section for the LiH and
HF molecules using medium size basis sets. Comparison are
made with the results of other methods along with the full
CI values if available. Spectroscopic constants are computed
from the PES obtained from CEPA methods, and compared
with the FCI counterparts.

Since we do not have the results for the spin-free full-
blown SS-MRCC as yet, we are unable at this stage to
illustrate the extent to which the various approximants to
it can capture electron correlation in the general situation
relative to the SS-MRCC where open-shell model functions
are present. However, in cases where the model functions
are of the closed-shell type, the spin-adaptation of the SS-
MRCC is straightforward. However, comparison with the
FCI benchmark exact results in a given basis will always
be done to estimate the absolute accuracy of the numbers
in a given theory. In all calculations, we use the CASSCF
orbitals corresponding to the lowest energy state of a (3×3)
CAS, generated by GAMESS, with a set of natural MOs for
the doubly occupied and active orbitals, augmented by a set
of canonical orbitals for the virtual functions. In this paper,
we have presented only the results of relaxed description of
SS-MRCEPA methods obtained via a diagonalization of the
effective operator, as well as via the calculation of the corre-
sponding expectation values, which are essentially unrelaxed.
The latter has been denoted by 〈· · · 〉. The use of CASSCF
orbitals in lieu of the RHF orbitals improves the performance
of our SS-MRCEPA methods appreciably while computing
the full PESs. We would illustrate this aspect numerically
through the PES of LiH molecule.

In our preliminary applications of the SS-MRCEPA(I)
and SS-MRCEPA(D) method in this article as applied to

model spaces with open-shell functions, we have not included
the quadratic terms of the cluster operators. This does not
affect the extensivity of our formalism. A comprehensive
account considering the quadratic terms with the open-shell
model functions will also be communicated in due course.

4.1 LiH molecule

The study of ground state PES of LiH molecule 106–111
is a good test case in the sense that: (1) The reference space
(CASSCF) includes the following configurations: φ1 =
1σ 22σ 2, φ2 = 1σ 23σ 2 and φ3 = 1σ 22σ3σ . The last CSF is
an open-shell function, (2) A proper spin-adapted state-spe-
cific theory is called for since one of the CSFs is an open-shell
singlet. (3) Near the equilibrium region the doubly excited
 states described by the excited roots of the Heff would be
close in energy to some virtual functions, and hence would
be intruder-prone. As a consequence, the effective Hamil-
tonian-based methods would fail to describe the PES very
well.

In our calculations of the entire PES, we have used the
natural CASSCF orbitals of ground state from the three-
dimensional CAS. The basis used is the standard 6-311G∗
[ 112]. To judge the quality of the PES, the performance of
the various SS-MRCEPA methods is assessed via a compar-
ison with the corresponding FCI values.

In Fig. 2 we present the deviations of various SS-MRCEPA
methods from the FCI values for the ground state energies of
LiH system. We have presented the deviations for the relaxed
and the frozen coefficient varieties.

We now discuss the performance of the SS-MRCEPA
methods. Some of the preliminary results could be found in
one of our forthcoming articles 63, nevertheless we addi-
tionally include the SS-MRCEPA(D) in the present work.
The deviations of relaxed and unrelaxed values of various
SS-MRCEPA methods from the FCI values are nearly the
same. From Fig. 2, performances of the SS-MRCEPA(0) and
SS-MRCEPA(D) are seen to be better than the SS-MRCEPA(I)
method. The energies obtained via SS-MRCEPA(0) and SS-
MRCEPA(D) methods are pretty close to the corresponding
FCI values over the entire PES. The minimum and maxi-
mum deviations from FCI values for SS-MRCEPA(0) are
–0.093 and –0.216 mH, respectively, whereas for the SS-
MRCEPA(I) case these values are –4.392 and –7.339 mH,
respectively. In the case of SS-MRCEPA(D) method, the min-
imum deviation from FCI is –0.118 mH whereas the maxi-
mum deviation is –0.468 mH. The deviation from the FCI
values decreases with increase in internuclear separations for
SS-MRCEPA methods. This is also true for the corresponding
CEPA(I) scheme. At shorter nuclear distances, the deviation
of the relaxed description is slightly smaller than that of the
unrelaxed one [e.g. at R = 2.0 a.u. for relaxed values devi-
ations for SS-MRCEPA(0) = –0.211 mH, SS-MRCEPA(D) =
–0.325 mH and SS-MRCEPA(I) = –6.868 mH whereas for
the unrelaxed cases, 〈SS-MRCEPA(0)〉= –0.260 mH, 〈SS-
MRCEPA(D)〉= –0.335 mH, 〈SS-MRCEPA(I)〉= –6.869 mH].
The deviations for the relaxed and unrelaxed schemely are
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Fig. 2 Plot of energy difference [EFCI − EMethod] (mH) for the ground state of LiH molecule using the CASSCF orbitals for the lowest root of
the (3×3) CAS

almost identical at large bond length [e.g. at R = 10.0 a.u., for
relaxed values, the deviations for SS-MRCEPA(0) =
–0.093 mH, SS-MRCEPA(D) = –0.113 mH and SS-
MRCEPA(I) = –4.392 mH whereas for unrelaxed cases,
〈SS-MRCEPA(0)〉= –0.093 mH, 〈SS-MRCEPA(D)〉=
–0.118 mH, 〈SS-MRCEPA(I)〉= –4.392 mH ]. From the above
numerical discussion & regarding the performances of our
SS-MRCEPA methods, we may conclude these methods are
quite effective in generating the PES of LiH molecule over
the wide range of geometries.

The behaviour of the different SS-MRCEPA methods are
quite dramatically different if RHF, rather than the CASSCF
orbitals, are used in computing the PES. We show the behav-
ior of these methods using RHF orbitals of the ground state
for LiH in Fig. 3. Around the equilibrium geometry, where
the RHF function dominates (thus approaching the SR limit),
the behavior of the SS-MRCEPA(0) and SS-MRCEPA(I) are
very similar. SS-MRCEPA(D) behaves quite differently in
this region. All the results are, however, poorer as compared
with those obtained with CASSCF orbitals, but this figure is
displayed only to underline the relative asymptotic limits of
the SS-MRCEPA methods in the SR limit.

Since the SS-MRCEPA methods perform very well to
compute the PES, we have also calculated the equilibrium
geometry re, harmonic vibrational frequency ωe, anharmo-
nicity constant ωexe, rotational constant Be, rovibronic con-
stant αe, and centrifugal distortion constant De. Table 1
contains the spectroscopic constants for LiH system obtained
via different SS-MRCEPA methods using CASSCF orbitals.
From the table it is clear that the various spectroscopic con-
stants of LiH molecule computed via various SS-MRCEPA
methods are quite encouraging.

4.2 HF molecule

Our next test case is the HF molecule. This molecule pos-
sesses pronounced multi-reference character even around the
equilibrium geometry [ 111,113–118]. Hence the computa-
tion of the ground PES of HF molecule over the entire range
of geometries is a challenging task for any MR-based method.

Just as in LiH, the three-dimensional reference space of
HF contains one open-shell CSF, apart from the two closed-
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Fig. 3 Plot of energy difference [EFCI − EMethod] (mH) for the ground
state of LiH molecule using the Hartree–Fock orbitals
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Fig. 4 Plot of energy difference [EFCI − EMethod] (mH) for the ground state of HF molecule using the 6-31G basis and the CASSCF orbitals for
the lowest root of the (3×3) CAS

Table 1 Spectroscopic constants of LiH (using CASSCF orbitals)

Method re (Å) ωe ωexe Be αe De × 10−3

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

SS-MRCEPA(0) 1.621 1477.55 20.93 7.238 0.149 0.694
SS-MRCEPA(I) 1.621 1467.08 22.16 7.238 0.161 0.705
SS-MRCEPA(D) 1.631 1376.24 31.10 7.145 0.242 0.770
FCI 1.624 1406.25 28.97 7.215 0.223 0.760
Experimenta 1.596 1405.65 23.20 7.513 0.213 0.861
a K. P. Huber, G. Herzberg, Constants of diatomic of molecules (Van
Norstrand, NY, 1979)

shell functions. The reference configurations are: φ1 =
[core]σ 2, φ2 = [core]σ�2 and φ3 = [core]σσ�. We use the
orbitals obtained from CASSCF calculation corresponding
to the lowest root of the (3×3) CAS reference function.

For this system we have used two sets of basis viz. stan-
dard 6-31G basis, set [ 119] and cc-pVDZ basis set [ 112].
Although the present basis sets are not large enough, they are
adequate to enable us to draw useful conclusions regarding
the applicability of the SS-MRCEPA methods in computing
the energies over a wide range of nuclear geometries.

We have used the standard 6-31G basis set [ 119] for
the calculations, since we have the flexibility to compare
our results with those obtained by Krylov and co-workers
[ 113–120]. We have calculated both the PES and also com-
pared their relative performance with the standard FCI re-
sults in the same basis. To get a better feeling regarding
the efficacy of our recently developed explicitly spin-free
SS-MRCEPA methods, we also quoted the values of various
spin flip approaches of CIS methods [ 113–120].

Figure 4 depicts the results for the different versions
of the SS-MRCEPA methods. A comparison of the figures

clearly point out that the performance of the SS-MRCEPA(0)
is very close to that of the SS-MRCEPA(I) counterpart. At
large distance, SS-MRCEPA(I) performs slightly better than
SS-MRCEPA(0). On the other hand, the SS-MRCEPA(0)
and SS-MRCEPA(I) methods perform better than the cor-
responding CEPA(D) version. In this system, the minimum
and maximum deviations (mH) of SS-MRCEPA(0) from the
FCI values are −0.399 and −8.016, respectively. These devi-
ations (mH) for the SS-MRCEPA(D) method are −3.497 and
−10.518. In contrast to the LiH system, the deviation of re-
sults of the SS-MRCEPA methods from FCI ones increases
gradually with the H–F bond distances. As that of the LiH
case, the performance of relaxed description of various SS-
MRCEPA methods is slightly better than the unrelaxed one.
We now discuss the performance of spin flip-like methods
113–120. In the case of SF-CIS and SC-SF-CIS methods,
the deviations from the FCI values are quite large, the mini-
mum and maximum values are −86.101 and −113.270 mH
respectively for SC-SF-CIS methods whereas these values
for SF-CIS method are −86.697 and −168.229 mH, respec-
tively. To improve the quality of results, proper treatment of
the dynamical correlation is essential.

We will now discuss the performance of our SS-MRCEPA
methods for the second basis set: cc-pVDZ. In Fig. 5, we
present the ground state energies over the entire PES com-
puted explicitly via spin-free SS-MRCEPA methods for the
HF system using cc-pVDZ basis. As that of the 6-31G basis,
the performance of relaxed scheme of various SS-MRCEPA
methods is slightly better than the corresponding unrelaxed
version. The relaxed version of SS-MRCEPA(I) performs
better over the unrelaxed one at short distances whereas at
a large distance (beyond 1.2 Angstroms), the two schemes
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Fig. 5 Plot of energy difference [EFCI − EMethod] (mH) for the ground state of HF molecule using the cc-pVDZ basis and the CASSCF orbitals
for the lowest root of the (3×3) CAS

show similar performance with respect to the FCI values.
On the other hand, the performance of SS-MRCEPA(0) and
SS-MRCEPA(I) are comparable at a short distance while at a
large distance, SS-MRCEPA(I) performs slightly better over
SS-MRCEPA(0). The performance of SS-MRCEPA(0) and
SS-MRCEPA(I) using cc-pVDZ basis set is better than that
of the corresponding CEPA(D) version as also seen for the
6-31G basis set. The maximum deviations for the relaxed
schemes of the SS-MRCEPA(0), SS-MRCEPA(I) and SS-
MRCEPA(D) are 4.68, 4.04 and −8.84 mH, respectively, and
the corresponding minimum deviations are −0.21, −0.14 and
−3.67 mH, respectively.

With only a few example applications discussed here, we
feel that it may not be fair at this stage to conclude defin-
itively about the relative performance of SS-MRCEPA(0),
SS-MRCEPA(D) and SS-MRCEPA(I) methods. From the
foregoing discussion, it is clear that the performance of the
SS-MRCEPA(0) is usually better than the other variants. At
times CEPA(D) performs better than CEPA(I), and vice versa.
More exhaustive calculations of various SS-MRCEPA are
needed, to come to a definitive conclusion, which are on the
way.

5 Summary

In this paper, we have presented a new formulation of
manifestly spin-free state-specific multi-reference CEPA
theories (SS-MRCEPA) based on a CAS, which are designed
to bypass intruders. The method is derived as a CEPA like
approximant from our size-extensive SS-MRCC theory. The
use of the entire portion φ0μ of the highest closed-shell

component of φμ as the vacuum to define all the excitations
on φμ in normal order is rather powerful, and offers a simple
yet convenient access not only to define the various excitation
operators but also to simplify the resulting working equations
in the spin-free formulation. Because of the generally non-
commuting nature of the spin-free generator, the working
equations are more involved. However, we have presented
a scheme which makes it possible to get a simple solution
to it in an efficient way. We have discussed in this article,
the theory of the spin-free SS-MRCEPA methods generated
from the SS-MRCC method and also illustrated the numerical
efficacy of its various approximants by applying them in the
systems where not only closed-shell but also open-shell func-
tions are present in the model space. These systems possess
quasi-degeneracy at some points on the PES and there are po-
tential intruders at some other points. In our applications the
CASSCF method is used to account for the non-dynamical
behavior which arises for near degeneracies between differ-
ent electronic configurations. This wave function is then used
as the reference in a non-perturbative CEPA-like treatment of
remaining dynamical correlation effects. From the above dis-
cussion, we can say that the suite of SS-MRCEPA methods
perform very well. Unlike most of the CAS-based CEPA like
state-specific methods, all of our SS-CEPA counterparts are
rigorously size-extensive and intruder-free in nature. Hence,
they are very effective in studying the PES over the wide
range of geometrical distortions. We have illustrated this by
applying them to study the PES of LiH and HF. Of course,
the most stringent tests for the generality of our SS-MRCC
formalism and its various CEPA-like approximants would
be in situations where the orbitals change very rapidly as a
function of the minor geometrical distortions, as happens in
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weakly avoided crossings. We have shown the effectiveness
of our formalisms in one such difficult test system in an-
other paper 63. More extensive applications of the method
are under way and will be reported in our forthcoming pub-
lications.
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1. Č í žek J (1966) J Chem Phys 45:4256
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